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Abstract- Coda is a file system for a large-scale distributed
computing environment composed of Unix workstations. It pro-
vides resiliency to server and network failures through the use of
two distinct but complementary mechanisms. One mechanism,
server replication, stores copies of a file at multiple servers. The
other mechanism, disconnected  operation, is a mode of execu-
tion in which a caching site temporarily assumes the role of
a replication site. Disconnected operation is particularly use-
ful for supporting portable workstations. The design of Coda
optimizes for availability and performance, and strives to pro-
vide the highest degree of consistency attainable in the light
of these objectives. Measurements from a prototype show that
the performance cost of providing high availability in Coda is
reasonable.

Index Terms- Andrew, availability, caching, disconnected op-
eration, distributed file system, performance, portable comput-
ers, scalability, server replication.

I. INTRODUCTION

LOCATION-transparent distributed file system based onAthe Unix’ file system model is a valuable mechanism for
collaboration between physically dispersed users. This is par-
ticularly true in a distributed workstation environment where
the primary activities are education, research, and software
development. The Andrew  File System (AFS) is a highly
successful realization of such a mechanism for a campus-sized
user community [9], [ 151. Positive experience with AFS has
motivated the recent work on extending it nationwide [ 171.
The importance of a shared Unix file system for a distributed
workstation environment is further confirmed by many other
efforts in industry and academia [16].

The work described in this paper arose from our extensive
experience as implementors and users of AFS over the past
five years. On the one hand, we were pleased with the func-
tionality, performance, and ease of administration of AFS.
At the same time we were concerned with its vulnerability to
failures of servers and network components. Such failures can
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seriously inconvenience many users for time periods ranging
from a few minutes to many hours. At least a few such outages
occur somewhere in our system every day.

The Coda File System is a descendant of AFS that is sub-
stantially more resilient to failures. The ideal that Coda strives
for is constant data availability, allowing a user to continue
working regardless of failures elsewhere in the system. Our
goal is to provide users with the benefits of a shared data
repository, but to allow them to rely entirely on local resources
when that repository is partially or totally inaccessible.

A related goal of Coda is to gracefully integrate the use
of AFS with portable computers. At present, users manually
copy relevant files from AFS, use the machine while isolated
from the network, and manually copy updated files back to
AFS upon reconnection. These users are effectively perform-
ing manual caching of files with write-back on reconnection.
If one views the disconnection from AFS as a deliberately-
induced failure, it is clear that a mechanism for supporting
portable machines in isolation is also a mechanism for fault
tolerance.

Although this paper focuses on Coda, the problem of data
availability is not specific to it. Growth in scale and complexity
inevitably results in more components that can fail, and more
hardware and software interactions that can manifest them-
selves as failures. Consequently, the large-scale distributed
file systems of the future will have to provide continued ac-
cess to data in the face of temporary failures if they are to
remain viable.

In the rest of this paper, we describe the design and imple-
mentation of Coda. We motivate our design choices in Section
II, present the design in Sections III-V, and elaborate on the
key data structures and protocols in Section VI. We describe
the status and performance of a Coda prototype in Sections
VII and VIII. We conclude with an examination of related
research in Section IX and a summary of the paper in Section
X.

II. DESIGN RATIONALE

Three fundamental factors influenced the design of Coda.
These are

. our desire to produce a highly scalable system

. the range of failures we wished to address

. the need to emulate Unix file semantics.

In the course of our design, we discovered that the constraints
imposed by these factors often conflicted with each other. The

0018-9340/90/0400-0447 $01 .OO @ 1990 IEEE



www.manaraa.com

448 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 4, APRIL 1990

current design of Coda is therefore a compromise that, in our
judgment, best suits our usage environment.

.

.

Clients dynamically map files to servers and cache this
information.
It uses token-based authentication and end-to-end encryp-
tion integrated with its communication mechanism [ 131.

A. Scalability

A scalable distributed system is one that can easily cope
with the addition of users and sites. Growth has economic,
performance, and administrative consequences. Our goal was
to build a system whose growth would incur as little expense,
performance degradation, and administrative complexity as
possible. Since this goal was also the major focus of Coda’s
ancestor, AFS, we tried to preserve much of its design.

In AFS, a small set of trusted servers jointly provide a stor-
age repository shared by a much larger number of untrusted
clients. To maximize client-server ratio, most load is borne by
clients. Only functions essential to integrity or security are per-
formed by servers. Caching is the key to scalability in AFS.
The operating system on each client intercepts open and close
file system calls2 and forwards them to a cache-management
process called Venus. After a file is opened, read and write
operations on it bypass Venus. Venus contacts a server only
on a cache miss on open, or on a close after modification. In
both cases, the file is transferred in its entirety. Cache coher-
ence is maintained by a callback mechanism, whereby servers
notify workstations of changes to cached files. Clients dynam-
ically determine the location of tiles on servers and cache this
information.

B. Range of Failures

To achieve our goal of continued client operation in the face
of failures, we had two strategies available to us. The first was
to use replication across servers to render the shared storage
repository more reliable. The second was tdeliberately-o make each client
capable of fully autonomous operation if the repository failed.
Each of these strategies improves availability, but neither is
adequate alone.

Enhancing the availability of the shared storage repository
increases the availability of all shared data. It protects against
individual server failures and some network failures. Unfor-
tunately, it does not help if all servers fail, or if all of them
are inaccessible due to a total partition of the client. A spe-
cial case of the latter is the use of a portable computer when
detached from the network.

The highly dynamic nature of AFS enhances its scalabil-
ity. There are very few static bindings that require atomic,
systemwide updates for Al-5 to function correctly. A work-
station with a small disk can potentially access any file in AFS
by name. One can move to any other workstation and effort-
lessly access one’s files from there. Adding a new workstation
merely involves connecting it to the network and assigning
it an address, Workstations can be turned off or physically
relocated at any time without fear of inconveniencing other
users. Only a small operational staff is required to monitor
and service the relatively few AFS servers. Backup is needed
only on the servers, since workstation disks are merely used
as caches. Files can be easily moved between servers during
normal operation without inconveniencing users.

Coda retains many of the features of AFS that contribute
to its scalability and security:

Making each client fully autonomous is infeasible. The disk
storage capacity of a client is a small fraction of the total
shared data. This strategy is also inconsistent with our model
of treating each client’s disk merely as a cache. It represents
a return to the model of isolated personal computers rather
than a collection of workstations sharing a file system. The
advantages of mobility, and the ability of any user to use any
workstation as his own, are lost. Yet temporary autonomy
seems acceptable for brief periods of time, on the order of
minutes or hours, while a user is active at a client.

In the light of these considerations we decided to use a
combination of the two strategies to cover a broad range of
failures. Coda uses server replication, or the storing of copies
of tiles at multiple servers, to provide a shared storage repos-
itory of higher availability than AFS. A client relies on server
replication as long as it remains in contact with at least one
server. When no server can be contacted, the client resorts
to disconnected operation, a mode of execution in which the
client relies solely on cached data. We regard involuntary dis-
connected operation as a measure of last resort and revert to
normal operation at the earliest opportunity. A portable client
that is isolated from the network is effectively operating dis-
connected,

. It uses the model of a few trusted servers and many un-
trusted clients.

. Clients cache entire files on their local disks. From the
perspective of Coda, whole-file transfer also offers a de-
gree of intrinsic resiliency. Once a tile is cached and open
at a client, it is immune to server and network failures.
Caching on local disks is also consistent with our goal of
supporting portable machines.

. Cache coherence is maintained by the use of callbacks.
But, as described later in the paper, the maintenance of
callbacks is more complex in Coda than in AFS.

Our need to handle network failures meant that we had
to address the difficult issue of consistency guarantees across
partitions. In the terminology of Davidson et al. [3], we had to
decide whether to use a pessimistic replication strategy, pro-
viding strict consistency, or an optimistic strategy, providing
higher availability. The former class of strategies avoids up-
date conflicts by restricting modifications to at most one par-
tition. The latter allows updates in every partition, but detects
and resolves conflicting updates after they occur.

’ Directories are also cached on clients, but modifications to them are
immediately  propagated t o   servers. F o r ease of exposition we confine our
discussion to files in this section.

We chose to use an optimistic strategy for three reasons.
First, and most important, such an approach provides higher
availability. Second, we saw no clean way of supporting
portable workstations using a pessimistic strategy. Third, it
is widely believed that write sharing between users is rel-
atively infrequent in academic Unix environments. Conse-
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quently, conflicting updates are likely to be rare. We guar-
antee detection and confinement of these conflicts, and try to
do this as soon after their occurrence as possible.

The specific replication strategy we chose is an adapta-
tion of that originally proposed by Locus [19]. Coda ver-
sion vectors (CVV’s), similar in concept but distinct in de-
tail from version vectors described by Parker et al. [lo], are
used to detect write-write conflicts on individual files. We
did not choose the more powerful optimistic strategy pro-
posed by Davidson [2], even though it is capable of detecting
read-write conflicts across multiple files. We were concerned
with the complexity of the latter strategy and questioned its
value in a Unix environment where multifile transactional
guarantees are absent. We also felt that inconsistencies due
to conflicting updates should be brought to the attention of
users rather than being rolled back by the system.

To summarize, Coda enhances availability both by the repli-
cation of files across servers, as well as by the ability of clients
to operate entirely out of their caches. Both mechanisms de-
pend upon an optimistic strategy for detection of update con-
flicts in the presence of network partitions. Although these
mechanisms are complementary, they can be used indepen-
dently of each other. For example, a Coda installation might
choose to exploit the benefits of disconnected operation with-
out incurring the CPU and disk storage overhead of server
replication.

C. Unix Emulation

Our ideal is to make Coda appear to be a giant, failure-proof
shared Unix file system. Unfortunately, realizing this ideal
requires strict adherence to one-copy Unix semantics. This
implies that every modification to every byte of a file has to
be immediately and permanently visible to every client. Such
a requirement is obviously in conflict with our goals of scala-
bility and availability. We have therefore relaxed the accuracy
with which we emulate Unix semantics, and have settled for
an approximation that can be implemented in a scalable and
available manner. We have drawn upon two lessons from AFS
to develop this approximation, and believe that it will satisfy
the vast majority of users and applications in our environment.

I) AFS-I Semantics: The first lesson was that propagat-
ing changes at the granularity of file opens and closes was
adequate for virtually all applications in our environment. The
initial prototype of AFS (AFS-1) revalidated cached files on
each open, and propagated modified files when they were
closed. A successful open implied that the resulting copy of
the file was the latest in the system.

We can precisely state the currency guarantees offered by
this model by considering a client C operating on a file F
whose custodian is server S. Let latest(F, S)  denote the fact
that the current value of F at C is the same as that at S. Let
failure(S) denote failure of the current operation by C on S,
and updated(F, S) denote a successful propagation of C’s
copy of F to S. Then the currency guarantees provided by
open and close operations at C can be expressed as follows:

open success latest(F, S)
open failure fIilure(S)

close success updated(F, S)
close failure failure(S)

2) AFS-2 Semantics: The second lesson we learned was
that the slightly weaker currency guarantees provided by the
callback mechanism of the revised AFS design (AFS-2) were
acceptable. A callback is established as a side effect of file
fetch or cache validation. It is a guarantee by a server that
it will notify the client on the first modification of the file
by any other client. If this notification happens, the server is
said to have broken the callback.3 Once broken, the callback
has to be reestablished by the client. But, as a result of a
network failure, a server’s attempt to break a callback may
not be noticed by a client. We refer to such an event as a lost
callback. Because of a lost callback, a client may continue to
use a cached copy of a file for up to r seconds after the file
was updated elsewhere. 7 is a parameter of the system, and
is typically on the order of a few minutes.

We can characterize the currency guarantees of AFS with
callbacks by extending our notation. latest(F, S, t) now de-
notes the fact that the current value of F at C is the same as
that at S at some instant in the last t seconds. In particular,
latest(F, S, 0) means F is currently identical at C and S. If
we indicate the loss of a callback from S to C during the
last 1 seconds by lostcalllmck(S, t), and the presence of F in
C’s cache prior to the current operation by incache(F), the
resulting currency guarantees can be stated thus:

open success latest(F, S, 0) v
(ldest(F, S, T)
A lostcullback(S, 7) A incuche(F))-

all others as for AFS-1

3) Coda Semantics: In Coda, the single server S is re-
placed by a set of servers ,?. C maintains the subset S of ,?
that it was able to contact on the most recent remote oper-
ation. s is reevaluated at least once every 7 seconds. When
s is empty, C is operating disconnected. The intuitive cur-
rency guarantee offered by a successful Coda open is that it
yields the most recent copy of F among the set of currently
accessible servers. If no server is accessible, the cached copy
of F is used. A successful close indicates that the file has
been propagated to the set of currently accessible servers, or
that no server is available and the file has been marked for
propagation at the earliest opportunity.

The use of callbacks and an optimistic replication scheme
weakens these intuitive currency guarantees. A more precise
statement of the guarantees can be made by further extension
of our notation. latest(F, S, t) now denotes the fact that the
current value of F at C was the latest across all servers in S at
some instant in the last t seconds. It also denotes the fact that
there were no conflicts among the copies of S at that instant.
lostcallback(3, t) now means that a callback from some mem-
ber of s to C was lost in the last t seconds. updated(F, 3)
means that the current value F at C was successfully prop-
agated to all members of S. conflict(F, 3) means that the
values of F at S are currently in conflict. Using this notation,

’   Unfortunately the terminology is a little confusing.  As used in the AFS
literature, “callback” is a noun rather than a verb, and is an abbreviation for
“callback promise.”
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the currency guarantees offered by Coda operations can
expressed as follows:

be its members have stale replicas. As a side effect, a callback
is established with the preferred server.

open success (s # 0 A (/urest(F, $, 0) V (kztest(F, S, r)
When a file is closed after modification it is transferred

in parallel to all members of the AVSG. This approach is
simple to implement and maximizes the probability that every
replication site has current data at all times. Server CPU load
is minimized because the burden of data propagation is on the
client rather than the server. This in turn improves scalability,
since the server CPU is the bottleneck in many distributed file
systems.

A lostcallback@, r) A incuche(F))))
v (3 = 0 A incache(

open failure (s # 0 A @nflict(F, S))
v (S = 0 A +ncxxhe(F))

close success (s # 0 A updated(F, 3))
v (S = 0).

close failure (s # 0 A conflict(F, 3))

Although we believe that the currency guarantees of Coda
are adequate for a typical academic or research environment,
they may be too weak for some applications. Databases are
a class of applications that we specifically do not attempt to
support in Coda. Our view is that a database for a large-scale
distributed environment should be implemented as a separate
system rather than being built on top of a distributed file
system.

III. SERVER REPLICATION

The unit of replication in Coda is a volume, a set of files
and directories located on one server and forming a partial
subtree of the shared name space.44 Each file and directory in
Coda has a unique low-level file identifier (FID), a compo-
nent of which identifies tbe parent volume. All replicas of an
object have the same FID.

The set of servers with replicas of a volume constitute its
volume stomge group (VSG).  The degree of replication and
the identity of the replication sites are specified when a volume
is created and are stored in a volume replication databuse
that is present at every server. Although these parameters can
be changed later, we do not anticipate such changes to be
frequent. For every volume from which it has cached data,
Venus (the client cache manager) keeps track of the subset of
the VSG that is currently accessible. This subset is called the
accessible volume stomge group (AVSG). Different clients
may have different AVSG’s  for the same volume at a given
instant. In the notation of Section II-C3, the VSG and AVSG
correspond to d and S, respectively.

A. Strategy

The replication strategy we use is a variant of the read-one,
write-all approach. When servicing a cache miss, a client ob-
tains data from one member of its AVSG called the preferred
server. The preferred server can be chosen at random or on
the basis of performance criteria such as physical proximity,
server load, or server CPU power. Although data are trans-
ferred only from one server, the other servers are contacted by
the client to verify that the preferred server does indeed have
the latest copy of the data. If this is not the case, the member
of the AVSG with the latest copy is made the preferred site,
the data are refetched; and the AVSG is notified that some of

‘Coda also supports nonreplicated  vohtmes and volumes with read-only
replicas, a feature inherited from AFS. We restrict our discussion here to
volumes with read-write replicas.

Since our replication scheme is optimistic, we have to check
for conflicts on each server operation. We also require that
server modifications be made in a manner that will enable
future conflicts to be detected. These issues are further dis-
cussed in Section VI, which describes the data structures and
protocols used in server replication.

At present, a server performs no explicit remote actions
upon recovery from a crash. Rather, it depends upon clients to
notify it of stale or conflicting data. Although this lazy strategy
does not violate our currency guarantees, it does increase the
chances of a future conflict. A better approach, which we plan
to adopt in the future, is for a recovering server to contact
other servers to bring itself up to date.

B. Cache Coherence

The Coda currency guarantees stated in Section II-C require
that a client recognize three kinds of events no later than 7
seconds after their occurrence:

. enlargement of an AVSG (implying accessibility of a pre-
viously inaccessible server)

. shrinking of an AVSG (implying inaccessibility of a pre-
viously accessible server)

. a lost callback event.

Venus detects enlargement of an AVSG by trying to con-
tact missing members of the VSG once every T seconds. If
an AVSG enlarges, cached objects from the volume may no
longer be the latest copy in the new AVSG. Hence, the client
drops callbacks on these objects. The next reference to any of
these objects will cause the enlarged AVSG to be contacted
and a newer copy to be fetched (if one exists).

Venus detects shrinking of an AVSG by probing its members
once every r seconds. Shrinking is detected earlier if a normal
operation on the AVSG fails. If the shrinking is caused by
loss of the preferred server, Venus drops its callbacks from
it. Otherwise, they remain valid. It is important to note that
Venus only probes those servers from which it has cached
data; it does not probe other servers, nor does it ever probe
other clients. This fact, combined with the relative infrequency
of probes (7 being ten minutes in our current implementation),
ensures that probes are not an obstacle to the scalability of the
system.

If Venus were to place callbacks at aI1 members of its
AVSG, the probe to detect AVSG shrinking would also de-
tect lost callback events. Since maintaining callback state at
all servers is expensive, Venus only maintains a callback at
the preferred server. The probe to the preferred server de-
tects lost callback events from it.
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But maintaining callbacks only at one server introduces a
new problem. The preferred server for one client need not
necessarily be in the AVSG of another client.’ Hence, an
update of an object by the second client may not cause a
callback for the object at the first client to be broken.

To detect updates missed by its preferred server, each probe
by Venus requests the volume version vector (volume CVV)
for every volume from which it has cached data. A volume
CVV is similar to a file or directory CVV, but summarizes
update information on the entire volume. It is updated as a
side-effect of every operation that modifies the volume. A
mismatch in the volume CVV’s indicates that some AVSG
members missed an update. Although the missed update may
not have been to an object in the cache, Venus conservatively
drops it callbacks on all objects from the volume.

C. Parallel Communication

Because of server replication, each remote operation in
Coda typically requires multiple sites to be contacted. If this
were done serially, latency would be degraded intolerably.
Venus therefore communicates with replication sites in paral-
lel, using the MultiRPC parallel remote procedure call mech-
anism [ 141. The original version of MultiRPC provided logical
parallelism but did not use multicast capability at the media
level. Since we were particularly concerned about the latency
and network load caused by shipping large tiles to multiple
sites, we have extended MultiRPC to use hardware multicast.
But we view multicast as an optimization rather than a funda-
mental requirement, and Coda retains the ability to use non-
multicast MultiRPC.

IV. DISCONNECTED OPERATION

Disconnected operation begins at a client when no member
of a VSG is accessible. Clients view it as a temporary state and
revert to normal operation at the earliest opportunity. A client
may be operating disconnected with respect to some volumes,
but not others. Disconnected operation is transparent to a user
unless a cache miss occurs. Return to normal operation is also
transparent, unless a conflict is detected.

A. Cache Msses

In normal operation, a cache miss is transparent to the user,
and only imposes a performance penalty. But in disconnected
operation a miss impedes computation until normal operation
is resumed or until the user aborts the corresponding file sys-
tem call. Consequently it is important to avoid cache misses
during disconnected operation.

During brief failures, the normal LRU caching policy of
Venus may be adequate to avoid cache misses to a disconnected
volume. This is most likely to be true if a user is editing
or programming and has been engaged in this activity long
enough to till his cache with relevant tiles. But it is unlikely
that a client could operate disconnected for an extended period
of time without generating references to files that are not in
the cache.

’ This can happen, for example, due to nontransitivity of network commu-
nication.

Coda therefore allows a user to specify a prioritized list
of files and directories that Venus should strive to retain in
the cache. Objects of the highest priority level are sticky and
must be retained at all times. As long as the local disk is large
enough to accommodate all sticky files and directories, the
user is assured that he can always access them. Since it is often
difficult to know exactly what file references are generated
by a certain set of high-level user actions, Coda provides the
ability for a user to bracket a sequence of high-level actions
and for Venus to note the file references generated during
these actions.

B. Reintegration

When disconnected operation ends, a process of reinte-
gration begins. For each cached file or directory that has
been created, deleted, or modified during disconnected op-
eration, Venus executes a sequence of update operations to
make AVSG replicas identical to the cached copy. Reintegra-
tion proceeds top-down, from the root of each cached volume
to its leaves.

Update operations during reintegration may fail for one
of two reasons. First, there may be no authentication tokens
which Venus can use to securely communicate with AVSG
members. Second, inconsistencies may be detected due to up-
dates to AVSG replicas. Given our model of servers rather
than clients being dependable storage repositories, we felt that
the proper approach to handling these situations was to find
a temporary home on servers for the data in question and to
rely on a user to resolve the problem later.

The temporary repository is realized as a c o v o l u m e for ev-
ery replica of every volume in Coda. Covolumes are similar
in spirit to lost + found directories in Unix. Having a covol-
ume per replica allows us to reintegrate as soon as any VSG
site becomes available. The storage overhead of this approach
is usually small, since a covolume is almost always empty.

C. Voluntary Disconnection

Disconnected operation can also occur voluntarily, when
a client is deliberately disconnected from the network. This
might happen, for instance, when a user takes a portable ma-
chine with him on his travels. With a large disk cache the
user can operate isolated from Coda servers for an extended
period of time. The file name space he sees is unchanged,
but he has to be careful to restrict his references to cached
flies and directories. From time to time, he may reconnect his
client to the network, thereby propagating his modifications
to Coda servers.

By providing the ability to move seamlessly between zones
of normal and disconnected operation, Coda may be able to
simplify the use of cordless network technologies such as cel-
lular telephone, packet radio, or infrared communication in
distributed fde systems. Although such technologies provide
client mobility, they often have intrinsic limitations such as
short range, inability to operate inside buildings with steel
frames, or line-of-sight constraints. These shortcomings are
reduced in significance if clients are capable of autonomous
operation.
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V. CONFLICT RESOLUTION

When a conflict is detected, Coda first attempts to resolve it
automatically. Since Unix files are untyped byte streams there
is, in general, no information to automate their resolution. Di-
rectories, on the other hand, are objects whose semantics are
completely known. Consequently, their resolution can some-
times be automated. If automated resolution is not possible,
Coda marks all accessible replicas of the object inconsistent.
This ensures damage containment since normal operations on
these replicas will fail. A user will have to manually resolve
the problem using a repair tool.

A. Automated Resolution

The semantics of a. Coda directory is that it is a list of
(name, FID) pairs with two modification operations, create
and delete, that can act on the list. Status modifications, such
as protection changes, can also be made on the directory. The
resolution procedure for Coda directories is similar to that of
Locus [6], [ 191. There are three classes of conflicts involving
directories that are not amenable to automated resolution. One
class, update/update conflict, is exemplified by protection
modifications to partitioned replicas of a directory. The second
class, removelupdate conflict, involves updating an object
in one partition and removing it in another. The third class,
name/name conflict, arises when new objects with identical
names are created in partitioned replicas of a directory. All
other directory conflicts can be automatically resolved by a
compensating sequence of create or delete operations.

B. Repair Tool

The Coda repair tool allows users to manually resolve con-
flicts. It uses a special interface to Venus so that file requests
from the tool are distinguishable from normal file requests.
This enables the tool to overwrite inconsistent files and to per-
form directory operations on inconsistent directories, subject
to normal access restrictions. To assist the user, each replica
of an inconsistent object is made available in read-only form.
Since these read-only copies are not themselves inconsistent,
normal Unix applications such as editors may be used to ex-
amine them.

VI. REPLICA MA N A G E M E N T

We now examine replica management at the next level of
detail, focusing on the data structures and protocols used in
server replication. We begin with an abstract characterization
of replica states in Section VI-A, and then describe an ap-
proximation that can be efficiently realized in Section VI-B.
This approximation is conservative, in that it may occasion-
ally indicate a conflict where none exists but will never fail to
detect a genuine conflict. Finally, we describe the protocols
that modify replicas in Section VI-C.

A. State Characterization

Each modification on a server can be conceptually tagged
with a unique storeid by the client performing the operation.
If a server were to maintain a chronological sequence of the

The latest storeid (LSID) in the update history of a replica
can be used to characterize its state relative to another replica.
Two replicas, A and B, are said to be equal if their LSID’s are
identical. Equality represents a situation where the most recent
update to both replicas was the same. If B’s LSID is distinct
from A’s LSID but is present in A’s history, the replica at A
is said to dominate the replica at B. This situation may also
be described by saying B is submissive to A. In this situation,
both sites have received a common update at some point in
the past, but the submissive site has received no updates there-
after. The replicas are said to be inconsistent if neither A’s
LSID nor B’s LSID is present in the other’s update history.
Inconsistency represents a situation where updates  were made
to a replica by a client that was ignorant of updates made to
another replica.

In the case of files, a submissive replica directly corre-
sponds to our intuitive notion of stale data. Hence, Coda al-
ways provides access to the dominant replica of a file among a
set of accessible replicas. An inconsistency  among file repli-
cas arises from genuine update conflicts. In such a situation,
Coda immediately marks all accessible replicas in a manner
that causes normal operations on them to fail.

The situation is more complex in the case of directories,
because the update history of a directory does not capture ac-
tivity in its children. Consequently, update histories can only
be used conservatively in characterizing the states of direc-
tory replicas. Replicas whose update histories are equal are
indeed identical, but replicas with unequal update histories are
potentially in conflict.

B. State Representation

Since it would be impractical to maintain the entire update
history of a replica, Coda maintains an approximation to it.
The approximation consists of the current length of the update
history and its LSID. The LSID is composed of an identifier
unique to each client, concatenated with a monotonically in-
creasing integer.6 A replication site also maintains an estimate
of the length of the update history of every other replica. A
vector containing these length estimates constitutes the CVV at
this site. An estimate is always conservative. In other words,
a site may fail to notice an update made to a replica, but it
will never erroneously assume that the replica was updated.
A site’s estimate of updates to itself will be accurate as long
it has the ability to make local modifications in a manner that
is atomic and permanent.

Coda compares the states of replicas using their LSID’s
and CVV’s. When two replicas, A and B, are compared the
outcome is constrained to be one of four possibilities:

. strong equality, where LSIDA is identical to LSIDB, and
CVVA is identical to CVVB.

. weak equality, where LSIDA is identical to LSIDB, but
CVVA and CVVB are not identical.

. dominancelsubmission, where LSIDA is different from
LSIDB, and every element of CVVA is greater than or equal
to the corresponding element of CVVB (or vice versa).

storeids of an object, it would possess the entire update his- ’ In     our implementation these entities are the IP  address of a workstation
tory of the object at that server. and a logical timestamp.
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l inconsistency, where LSIDA is different from LSIDB,
and some elements of CVVA are greater than, but other ele-
ments are less than, the corresponding elements of CVVB.

Strong equality corresponds to a situation where a client
successfully updates A and B, and each replica is certain of
the other’s update. Weak equality arises when the update suc-
ceeds at both sites, but this fact is not known to both replicas.
Together, strong and weak equality correspond to the notion of
replica equality defined in terms of update histories in Section
VI-A. The pairwise comparisons defined here can be easily
generalized to set comparisons.

C. State Transformation

There are four classes of operations in Coda that can change
* the state of a server replica:

. update extends the update history by a new, hitherto
unused, storeid

. force logically replays those updates made to a dominant
site that are missing from a submissive one

. repair resembles update, but is used to return a set of
replicas previously marked inconsistent to normal use.

. migrate saves copies of objects involved in unsuccess-
ful updates resulting from disconnected operation for future
repair.

We describe the details of these classes of operations in the
following sections. When we refer to file or directory status
in these sections, we include the CVV and LSID.

Z) Update: Update is, by far, the most frequent class of
mutating operation. Every common client-server interaction
that involves modification of data or status at the server falls
into this class. Examples include file store, file and directory
creation and deletion, protection change, and link creation.
In updates to existing objects, the protocol consists of two
phases, with the client acting as initiator and coordinator. In
the first phase, each AVSG site checks the LSID and CVV
presented by the client. If the check succeeds, the site performs
the requested semantic action such as the transfer of data in
the case of a file store. In the second phase, each AVSG site
records the client’s view of which sites executed the previous
phase successfully. In updates where a new object has to be
created, these two phases are preceded by a phase where a
new FID is allocated by the preferred server.

The check at an AVSG site in the first phase succeeds for
tiles if the cached and server copies are equal or if the cached
copy dominates. Cached-copy dominance is acceptable for
files since an update for a submissive site is logically equiv-
alent to a force that brings its replica into equality followed
by the actual update. Since new file data merely overwrite
existing data, we omit the force. For directories, the check
succeeds only when the two copies are equal. An unsuccess-
ful check of either type of object by any AVSG site causes the
client to pause the operation and invoke the resolution sub-
system at the AVSG. If the resolution subsystem is able to
automatically fix the problem, the client restarts the paused
operation. Otherwise the operation is aborted and an error
is returned to the user. A successful check causes the server
to atomically perform the semantic action, and to commit a
new LSID (sent by the client in the first phase) and a tentative

CVV that is identical to the client’s except for one additional
update at this server.

The client examines the replies from the first phase and
distributes a final CVV. The latter is identical to the CVV of
the first phase except that it indicates one additional update
at each responding server. Servers that receive this informa-
tion replace their tentative CVV’s by the final CVV. At an
AVSG site that crashed or was partitioned between the first
and second phases, the tentative CVV remains unchanged.

Since update is frequent, it is important to optimize its per-
formance. The total number of messages and latency are re-
duced by communicating with AVSG members in parallel.
Latency is further reduced by having Venus return control to
the user at the end of the first phase. Server throughput is in-
creased by the use of batching and piggybacking in the second
phase.

2) Force: A force operation is a server-to-server interac-
tion, with a client playing no part except to set in motion a
sequence of events that leads to the force. For example, a
force operation may occur as a result of Venus notifying its
AVSG that it has detected an inequality during a file fetch. It
may also occur when the system determines that a directory
conflict can be resolved by a sequence of forces. Force oper-
ations may also arise on server crash recovery, when a server
brings itself up to date.

A force of a file merely consists of atomically copying its
data and status from the dominant to the submissive site. But
a force of a directory is more complex. The ideal operation
would be one that rendered the subtrees rooted at the directory
replicas identical. The subtrees would be exclusively locked
for the entire duration of the force, and all changes would
be atomic. Unfortunately this is impractical, especially if the
subtrees in question are deep. Consequently, our approach is
to lock, and atomically apply changes, a directory at a time.

This approach does not violate our ability to detect genuine
conflicts for two reasons. First, directories only contain infor-
mation about immediate descendants. Second, when creating
an entry for a new object, we first make it point to a runt
replica which has a CVV that will always be submissive. A
failure to the forcing server could occur after the creation, but
before the force, of the runt. But any subsequent attempt to
access the runt would result in detection of inequality.

3) Repair and Migrate: Both repair and migrate are rel-
atively rare operations. A repair operation is used to fix in-
consistency and proceeds in two phases, similar to an update.
A migrate operation is used to place an object in conflict at
the end of disconnected operation in a covolume on a server.
The server replica is marked inconsistent, and accesses to the
object will fail until it is repaired.

VII. IMPLEMENTATION STATUS

Our goal in implementing Coda is to explore its overall
feasibility and to obtain feedback on its design. The proto-
type implementation runs on IBM RT’s, and is functional in
most respects. One can sit down at a Coda client and ex-
ecute Unix applications without recompilation or relinking.
Execution continues transparentIy when contact  is lost with
a server due to a crash or network failure. In the absence
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of failures, using a Coda client feels no different from using
an AFS client. The primary areas where our implementation
is incomplete are conflict resolution, the implementation of
sticky files, and certain aspects of reintegration. We expect to
complete these shortly.

We use the Camelot transaction facility [ 181 to obtain atom-
icity and permanence of server operations. Our use of Camelot
is restricted to single-site, top-level transactions. We do not
use nested or distributed transactions in our implementation.
To reduce the latency caused by synchronous writes to the
Camelot log, we have built a battery-backed ramdisk for each
of our servers.

To test the resiliency of the system we have built an emu-
lator that induces controlled and repeatable failures in Coda.
It consists of an interactive front-end that runs on a single
machine, and emulation routines that are invoked by the com-
munication package at every Venus and file server.

VIlI. PERFORMANCE EVALUATION

In this section, we present measurements that reflect on
the design and implementation of the Coda prototype. Our
discussion focuses on four questions:

. What is the effect of server replication?

. How does Coda behave under load?

. How important is multicast?

. How useful is a ramdisk for logging?

We have spent little effort until now on tuning the low-level
aspects of our implementation. It is likely that a refined im-
plementation will show noticeable performance improvement.
This should be kept in mind in interpreting the results reported
here.

A. Methodology and Configuration

Our evaluation is based on the Andrew benchmark [7],
which operates on a collection of files constituting the source
code of a Unix application. An instance of the benchmark gen-
erates as much network and server load as five typical AFS
users. We use the term load to refer to the number of clients
simultaneously running this benchmark.

The input to the benchmark is a subtree of 70 files to-
talling 200 kbytes in size. There are five distinct phases in the
benchmark: MakeDir, which constructs a target subtree that
is identical in structure to the source subtree; Copy, which
copies every file from the source subtree to the target sub-
tree; ScanDir, which recursively traverses the target subtree
and examines the status of every file in it; ReadAll, which
scans every byte of every file in the target subtree twice; and
Make, which compiles and links all the files in the target
subtree. The ScanDir and ReadAll phases reap the most ben-
efit from caching, and hence show the least variation in our
experiments.

The clients and servers used in our experiments were
IBM RT/APC’s with 12 megabytes of main memory and 70
megabyte disks, running the Mach operating system, and com-
municating on an Ethernet with no intervening routers. Each
server had an additional 400 megabyte disk on which Coda
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three times, with careful experimental control. In no case was
the variance in any measured quantity more than a few percent
of the corresponding mean.

Our reference point is Coda replicated at three servers
with Ethernet multicast enabled, a ramdisk at each server
for the Camelot log, and a warm cache.’ This configura-
tion is labeled “Coda:3” in the graphs. For comparison,
we also ran experiments on the same hardware and oper-
ating system with Coda replicated at two and one servers
(“Coda:2” and “Coda: 1,” respectively), with Coda non-
replicated (“Coda:NoRep”), with the current release of AFS
(“AFS”), and with the local Unix tile system of a client
(“Unix”).

B. Effect of Server Replication

In the absence of failures, we would like Coda’s perfor-
mance to be minimally affected by its high availability mecha-
nisms. Server replication is the primary source of performance
degradation, since it involves a more complex protocol as well
as data transfer to multiple sites. Camelot is another potential
source of performance degradation.

Fig. 1 shows the effect of server replication. Without repli-
cation, Coda takes 2 1% longer than the local Unix file system
to run the benchmark. This is essentially the same as that of
the current production version of AFS. With replication at
one, two, and three servers Coda takes 22%, 26%, and 27%
longer than Unix.

As Table I shows, the Copy phase of the benchmark is most
affected by replication since it benefits least from caching. On
a nonreplicated Coda volume, this phase takes 73% longer
than on Unix. On a volume replicated at one, two, and three
servers it takes 91%, 109%, and 118% longer. For compari-
son, AFS takes 82% longer. Table I also shows that the Scan-
Dir phase is noticeably longer in Coda than in AFS. This is
because the Coda cache manager is a user process, while the
AFS cache manager is inside the kernel. Consequently, Coda
incurs additional overhead in translating a pathname, even if
valid cached copies of all components of the pathname are
cached.

C. Behavior under Load

How does Coda perform when multiple workstations use it
simultaneously? Fig. 2 and Table II show the total elapsed time
of the benchmark as a function of load. As load is increased
from 1 to 10, the time for the benchmark increases from 100%
to 170%. As mentioned earlier, one load unit roughly corre-
sponds to five typical AFS users. In contrast, the benchmark
time for AFS only increases from 100% to 116% as load is
increased from 1 to 10.

Server CPU utilization is the primary contributor to the
difference in behavior between Coda and AFS under load.
Three factors contribute to increased server CPU utilization
in Coda. The first factor is, of course, the overhead due to
replication. The second is our use of Camelot. The third is
the lack of tuning of the Coda implementation.

’ Our measurements show that the main effect of a cold cache is to lengthen
volumes were stored. Each experiment was repeated at least the time of the Copy phase by 23% at a load of one.
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Unix AFS Coda: non-rep C o d a : 1 Coda: 2 Coda: 3

Fig. 1. Effect of replication on elapsed time. This graph shows the total
elapsed time of the Andrew benchmark at a load of one as a function of
varying the degree of server replication. It also compares Coda to AFS
and Unix. These data are presented in more detail in Table I.

TABLE I
EFFECT OF REPLICATION ON ELAPSED TIME

ConB8umtion LoadUnits MakeDir COPY ScanDir ReadAll Make Total

codaz3 1 5 (1) 48 (11 33 tt1 52(1) 248 (5) 386 (5)
Coda: 2 1 5 (1) 46 (2) 32(1) 52 (1) 247 (1) 384 (3)
Coda: I I 5 (0) 42(1) 32(1) 52 (1) 242 (2) 373 (3)
Coda: NoRep I 4 (0) 38 (11 32 (0) 52 (1) 241(1) 368 (2)
AFS 1 7 (3) 40(1) 27 (2) 53 (0) 242 (4) 369 (7)
Unix 1 5 (2) 22 (1) 21 (1) 36 (1) 221 (I) 305 (I)

This table presents the elapsed time of the phases of the Andrew benchmark for a variety of
configurations. Each time reported is in seconds, and is the mean of three trials. Numbers in parentheses are
standard deviations.

Fig. 3 shows the relative contributions of each of these fac-
tors. It presents the total number of server CPU seconds used
in the benchmark as a function of load for four different con-
figurations. The overhead due to replication is the difference
between the curves labeled “Coda:3” and “Coda: NoRep.”
The overhead due to Camelot is the difference between the
curves labeled “Coda: NoRep” and “Coda: NoCam.” The
latter curve corresponds to the configuration “Coda: NoRep”
in which we substituted a dummy transactional virtual memory
package for Camelot. The dummy had an interface identical to
Camelot but incurred zero overhead on every Camelot oper-
ation other than transaction commit. For the latter operation,
the dummy performed a write system call with an amount of
data corresponding to the average amount of data logged dur-
ing a Camelot transaction in Coda.’ The curve thus indicates
the expected performance of Coda for nonreplicated data if a
low-overhead transactional system were to be used in lieu of
Camelot. The overhead due to lack of tuning in Coda is the
difference between the curves labeled “Coda:NoCam” and
“AFS.”

Linear regression fits for the four configurations indicate
slopes of 36.7, 28.5, 21.7, and 18.0 s per load unit, re-
spectively. In other words, each additional load unit increases

* Although a Unix write is only synchronous with the copying   Of data to
a kernal buffer, the comparison is fair because the Camelot log was on a
ramdisk for our experiments.

server CPU utilization by these amounts in these contigura-
tions. The correlation coefficient is greater than 0.99 in each
case, indicating that a linear model is indeed an excellent fit
over this range of load.

D. Effect of Multicast

Early in our design we debated the importance of multi-
cast, perceiving both advantages and disadvantages in its use.
To quantify the contribution due to multicast we repeated the
load experiment with multicast turned off. Clients and servers
communicated via the nonmulticast version of MultiRPC for
this experiment.

Multicast is beneficial in two ways. It reduces the latency
of storing large files, and it reduces network load. Since the
Andrew benchmark does not involve very large files, we did
not observe a substantial improvement in latency due to  mul-
ticast. But we did observe substantial reduction in network
load. Fig. 4 shows the total number of bytes transmitted as
a function of load during the running of the benchmark. As
one would expect for a replication factor of 3, multicast re-
duces the number of bytes transmitted by about two-thirds.
Fig. 5 shows the corresponding number of packets transmit-
ted. The improvement due to multicast is less dramatic than
in Fig. 4 because many small nonmulticast control  packets are
transmitted as part of the multicast file transfer protocol.
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Fig. 2. Effect of load on elapsed time. This graph shows the total elapsed
time for the benchmark as a function of load. Table II presents the same
information in greater detail.

TABLE II

Configumtioa I_oad Units

Zoda: 3

WS

_I--

I
2

3
5
1
IO

I
2
3
5
7
IO

EFFEC OF LOAD0 ELAPSED 1 E

MakeDir Copy ScanDir ReadAIl Total
- -

5 (I) 48 (1) 33(1) 52(1) 248(5) 386 (5)
6(l) 51 (I) 3 2 ( 0 )  5 2 ( 1 )  2 5 1 ( 6 )  391(4)

8 (2) 56 (5) 3 2 ( 0 ) 5 1 ( 0 ) 2 6 7 ( 5 ) 414 (5)

11 (2) 83 (7) 3 4 ( 0 ) 5 4 ( 0 ) 2 7 8 ( 8 ) 460 (7)
15 (2) 114 (5) 33 (0) 5 3 ( 0 ) 3 1 3 ( 4 ) 529 (3)

3O(I) 170  (3) 3 4 ( 0 ) 53 (0) 3 6 9 ( 9 ) 657 (8)

7  (3) 4O (1) 27 (2) 5 3 ( 0 )  2 4 2 ( 4 )  369 (7)
6 (l) 41 (1) 27 (9) 54(0) 2 4 3 ( 1 ) 369 (I)

6 ( 1 )  46 (2) 2 7 ( 1 ) 5 4 ( 0 ) 2 4 7 ( 1 ) 319 (2)

6(1) 44(I) 2 7 ( 0 ) 5 3 ( 0 ) 2 5 1 ( 2 ) 382 (2)

8(1) 52 (I) 2 7 ( 1 ) 5 3 ( 1 ) 2 5 9 ( 0 ) 399 (1)

IO (2) 65 (I) 27 (0) 5 2 ( 0 ) 2 7 5 ( 2 ) 429 (3)

This table compares the running time of the phases of the Andrew benchmark for Coda replicated at three
servers to AFS. Each time reported is in seconds, and is the mean of three trials. Numbers in parentheses are
standard deviations.

0 2 4 6 8 10            12
Load Units

Fig. 3. Effect of load on server CPU utilization. This graph shows to-
tal number of server CPU seconds used as a function of load in run-
ning the benchmark. The configuration corresponding to the curve labeled
“Coda:NoCam” is described in the text of Section VIII-C,
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Fig. 4. Effect of Multicast on bytes transmitted.
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Fig. 5. Effect of Multicast on packets transmitted.

E. Contribution of Ramdisk

The function of the ramdisk is to reduce the cost of log
forces in Camelot, thereby reducing the latency of update op-
erations. Since the MakeDir and Copy phases of the bench-
mark involve the most updates, their combined running time is
an indicator of the contribution of the ramdisk. We measured
these times for two configurations: one in which Camelot uses
a raw disk partition for a log, and the other where it uses a
ramdisk. The data show that it takes 58      s  in the former case
and 53 s in the latter, a reduction of about 9%.

IX. RELATED WORK

The system most closely related to Coda is undoubtedly its
ancestor, AFS. Coda strives to preserve the virtues of AFS
while significantly enhancing its availability. The specific de-
sign decisions inherited from AFS have been described in
Section II-A.

Data availability has been the topic of many research efforts
in the last decade. A few of these have been experimental
projects to provide high availability in distributed file systems.
Examples of such projects include Violet [4], [5], RNFS [8]
(based on ISIS [l]), Saguaro [12], and Locus [19], [ll]. All
of these, with one exception, have used a pessimistic approach

to replica management and have therefore had little influence
on Coda.

The exception is Locus, originally developed as a research
prototype at UCLA and now marketed by Locus Computing
Corporation. There are significant differences in the research
and commercial versions of Locus. Most importantly, opti-
mistic replication is only used in the research version of Lo-
cus. A less ambitious primary-site replication scheme is used
in the commercial version. In the rest of this section, the term
“Locus” specifically refers to the research version.

Coda uses three ideas from Locus:

the view that.optimistic replication is acceptable in a Unix
environment ’
the use of version vectors for detecting conflicts
the use of Unix directory semantics to partially automate
resolution.

But there are major differences between the two systems, the
most significant of which are the following.

l Scalability and security are fundamental goals in Coda,
but not in Locus.
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Only Coda explicitly addresses the
puters.
Coda is based on the client-server
assumes a peer model.

use of portable com-

model, while Locus

Coda integrates the use of two different mechanisms,
whole-file caching and replication, while Locus relies
solely on replication.
Coda clients directly update server replicas in parallel. A
Locus usage site updates a single replication site which
then notifies other replication sites. The latter sites asyn-
chronously update themselves from the first replication
site.
Coda provides an approximation to Unix semantics. Lo-
cus provides an exact emulation of Unix semantics that
is less scalable and considerably more complex to imple-
ment.

The differences between Coda and Locus can be traced
to their fundamentally different views of distributed comput-
ing systems. Locus was designed in the early 198O’s, prior
to the advent of workstations, when distributed systems typi-
cally consisted of a few sites. Coda, in contrast, is specifically
designed for distributed workstation environments which are
already one to two orders of magnitude larger in scale. This
difference in scale is the origin of virtually every design dif-
ference between Coda and Locus.

Coda uses a highly dynamic mechanism, caching, to reduce
network and server load, to support user mobility, and to en-
able the addition and removal of clients at will. The more static
mechanism, replication, is only used among the far fewer
number of servers. Clients only have to keep track of the
accessibility of servers, not of other clients. Updating server
replicas directly by clients reduces total server CPU load, the
resource most widely reported to be the performance bottle-
neck in large-scale distributed file systems. In contrast, we do
not see how the strategies of Locus can be easily adapted for
use in a large-scale distributed environment.

A performance comparison between Coda and Locus would
be valuable in understanding the merits of the two systems.
But in spite of the voluminous literature on Locus, there is no
quantitative assessment of the performance implications of its
high availability mechanisms.

X. CONCLUSION

Our goal in building Coda is to develop a distributed file
system that retains the positive characteristics of AFS while
providing substantially better availahility. In this paper, we
have shown how these goals have been achieved. through the
use of two complementary mechanisms, server replication and
disconnected operation. We have also shown how discon-
nected operation can be used to support portable workstations.

Although Coda is far from maturity, our initial experience
with it reflects favorably on its design. Performance measure-
ments from the Coda prototype are promising, although they
also reveal areas where further improvement is possible. We
believe that a well-tuned version of Coda will indeed meet its
goal of providing high availability without serious loss of per-
formance, scalability, or security. A general question about
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optimistic replication schemes that remains open is whether
users will indeed be willing to tolerate occasional conflicts
in return for higher availability. Only actual experience will
provide the answer to this.
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